' quasi-experimental' Search Results
The Effect of Computer-Based Interactive Conceptual Change Texts on Eleventh Grade Students’ Understanding of Electrochemistry Concepts
computer assisted instruction conceptual change model conceptual change text digital course materials electrochemistry...
The purpose of the study was to investigate the effect of conceptual change-oriented instruction accompanied by computer-based interactive conceptual change text (CBICCT) on 11th grade students understanding of electrochemistry. The study was conducted in a high school in Ankara with 66 students enrolled in two science classes. A quasi-experimental design was used. The classes were assigned to groups; one as a control group and the other as an experimental group. While the control group was given traditional instruction, the experimental group was given conceptual change-oriented instruction accompanied by CBICCT. The Electrochemistry Concept Test (ECT) was administered before and after treatment. To investigate possible covariates, the Science Process Skills Test (SPST) was administered after treatment. The gain scores of ECT were analyzed with two-way ANCOVA when SPST scores were controlled as covariates, and the results showed that the experimental group developed a significantly better understanding of concepts than the control group. The results also showed that there was no mean difference between males and females and no interaction effect between instruction method and gender.
0
Use of Virtual Manipulatives in Addition of Fractions Among Year Four Pupils
conceptual understanding of adding fractions fractions quasi-experimental virtual manipulative year 4 pupils...
One of the challenging concepts that many primary school pupils deal with is adding fractions. However, the problem of adding fractions in the classroom might be resolved by employing virtual manipulatives. This study aimed to compare the use of virtual manipulatives and conventional lecture-based methods in two groups of Year 4 pupils to examine the effects of understanding the addition of fractions. Sixty-four pupils participated in this study. This study occurred throughout a six-week time frame in a primary school in Temerloh, Malaysia. A quasi-experimental non-equivalent pre-post test was implemented to compare the effects of the control and experimental groups. The first finding showed that the experimental group's conceptual understanding of adding fractions was significantly better after using virtual manipulatives during the intervention, t (62) = 11.682, p<0.005. Cohen's D demonstrated the effect size for comparison (d=2.06), showing a significant effect. The second finding revealed that the conceptual understanding of adding fractions was significantly better after the intervention with virtual manipulatives when controlling the pre-test score, F (1, 61) = 9.475, p < .001, η2 = 0.134. This study showed that pupils in the experimental group improved their conceptual understanding of adding fractions.
0